Meeting Market Specs with Efficient Beef Genetics

Dr Liam A. Mowbray BVSc(Hons), DipBus, BMRSc Research & Development Specialist – Genetic Improvement, Angus Australia

A bit about me

Setting the Scene....

Why do we want to meet market specs? Why do we want to increase performance and efficiency?

Business profitability \$\$\$

...But also need to keep up with current challenges and opportunities...

- Growing world population (supply and demand)
- Same or diminishing resources
- Consumer expectations evolving
- Climate is changing

"If you do what you've always done, you'll get what you've always gotten." - Tony Robins

What we will cover in this session:

- Genetic Fundamentals
- Estimated Breeding Values (EBV's)
- Application of EBV's
- Looking to the future

So... We need to be better than ever before at what we do \rightarrow producing beef

Lots of different traits:

- Traits important to the farm
- Traits important to the market
- Traits important to Welfare
- Traits important to the consumer

Examples

For Breeder:

- Calving Ease
- Docility
- Fertility

Backgrounder/Finisher

- Ability to fatten
- Feed efficiency
- Growth

For Consumer:

- Marbling
- Tenderness
- Nutrients
- Welfare

Fortunately, lots of variation exists – and we can select on it

...And when we take environmental variables out of the equation, we see this variation at its best (eg the ASBP)...

Contemporary group of ASBP Cohort 12 Steers at Tullimba Research Feedlot

There is a significant amount of genetic variation between animals within the Angus population

Cohorts 5 – 7 of the Angus Sire Benchmarking Project

A

Why would that happen?

- Random Shuffling of Genes
- Heritability of Traits

Random Shuffling of Genes

- Cattle have 30 pairs of Chromosomes
- For each pair of chromosomes
 - One from dam
 - One from sire
- Random combinations
 - Number of possible combinations = 1,073,741,824.

Figure 1. Illustration of the shuffling of chromosomes that occurs during sperm formation. The first column represents the bull's two sets of chromosomes. Chromosomes inherited from the bull's sire are in blue. Chromosomes from the bull's dam are in pink. The other columns depict possible combinations of paternal and maternal chromosomes in individual sperm cells. There are more than 1 billion possible combinations.

Heritability of Traits

ANGUS www.angusaustralia.com.au 00000

Estimated Breeding Values (EBV's)

- We use the variation that exists to create EBV's
- EBV's are a prediction of the breeding value (genetic merit) of an animal for individual traits.
- EBV's indicate the expected difference in progeny performance due to genetics.

Why do we use EBV's?

- EBV's take out non-genetic factors.
- This enables comparison of individuals genetic merit fairly and without environmental bias.
- For example, without EBV's we would often just be selecting older animals or animals that have been raised in more favourable environmental conditions.

How are EBV's calculated?

More info on TACE Platform here

ANGUS

				Februa	ary 2024 Tran	s Tasman Ang	us Cattle Ev	aluation				
		Calv	ing Ease		\frown		Growth			Fert	ility	Temp.
	Calving Ease Dir	Calving Ease Dtrs	Gestation Length	Birth Weight	200 Day Growth	400 Day Weight	600 Day Weight	Mat Cow Weight	Milk	Days to Calving	Scrotal Size	Docility
EBV	+6.3	+5.7	-4.5	+2.6	+53	+92	+118	+92	+22	-4.4	+2.4	+25
Acc	80%	66%	99%	98%	97%	97%	91%	87%	79%	56%	95%	97%
Perc	16	23	48	21	39	49	51	65	14	55	39	30
Prog	246	0	856	1138	439	256	2	0	0	0	111	392

		\bigwedge	Carc	ase			Feed Efficiency		Structural		Se	lection Index
	Carcase Weight	Eye Muscle Area	Rib Fat	Rump Fat	Retail Beef Yield	IMF	NFI-F	Claw Set	Foot Angle	Leg Angle	Angus Breeding Index	Angus Breeding Low Feed Cost Index
EBV	+69	+11.3	+1.9	+1.6	+0.2	+4.6	+1.33	+0.92	+1.06	+1.04	\$251	\$406
Acc	82%	84%	83%	83%	78%	84%	70%	89%	88%	87%	-	-
Perc	44	9	13	19	66	7	99	65	70	52	8	11
Prog	0	149/0	154/0	154/0	0	154/0	0	42	42	42	-	-
				Tra	its Observed: (CE,BWT,200WT((x2),400W1,SC,S	Scan(EMA, Rib, F	ump,IMF),Geno	mics		

Statistics: Number of Herds: 45, Prog Analysed: 1208, Genomic Prog: 448

How do we use and interpret an EBV?

Calves at 200days will have 10kg difference in weight

Note: same

maths works out

if minus one sire

Another example with Birth Weight

Calves at birth will have a 1.5kg difference

www.angusaustralia.com.au 🛛 O O 🛛 🗇 🗇

Trait correlations:

... Many traits have strong correlations

Calv Ease (DIR) : Birth Wt Calv Ease (DTRS) : Birth Calv Ease (DIR) : Gestation Length Calv Ease (DTRS) : Gestation Length Calv Ease (DIR) : Calv Ease (DTRS) Scrotal Size : Days to Calving Scrotal Size : 400 Day Wt

Carcase Wt : EMA Carcase Wt : Rib Fat Carcase Wt : Rump Fat Carcase Wt : RBY% Carcase Wt : IMF% Rib Fat : EMA Rib Fat : Rump Fat Rib Fat : RBY% Rump Fat : RBY% Rump Fat : RBY% EMA : RBY% EMA : IMF% IMF% : RBY%

...But that does not mean we cannot create animals that do both things...

Example 1: BW and Growth

Birth Wt : 200 Day Wt Birth Wt : 400 Day Wt Birth Wt : 600 Day Wt

Highly corelated, but...

Example 2: BW and Mature Cow Wt

...perhaps an area that hasn't been looked at enough?

Bending the curve...

Very possible to adjust cow weight if desired, like we have done with other traits....

Using EBV's to meet market Specs

Great tool to take the genetic side further

ANGUS

What market are you targeting?

Target market specifications for cattle carcases

Ref: NSW DPI PrimeFact 621

ANGUS www.angusaustralia.com.au 00000

Example 1:

- Self replacing Angus herd
- Retaining own replacement heifers
- Producing steers and surplus heifers for Grassfed EU slaughter.
 - Aim for 320-420kg carcass
 - 0-4 teeth
 - 7-22mm P8 fat

Key Traits for Grass Performance	Trait managed by
Weight for Age	Growth EBVs
Compliance	Rib & Rump Fat EBVs
Carcase Value	Carcase Quality traits

...Calving ease, fertility, maternal,

Target market specifications for cattle carcases

ANGUS

Sire example...

				Februa	ary 2024 Tran	sTasman Ang	us Cattle Eva	aluation				
		Calv	ing Ease				Growth			Fert	ility	Temp.
	Calving Ease Dir	Calving Ease Dtrs	Gestation Length	Birth Weight	200 Day Gro wth	400 Day Weight	600 Day ₩eight	Mat Cow Weight	Milk	Days to Calving	Scrotal Size	Docility
EBV	+8.5	+6.4	-8.0	-0.6	+54	+100	+133	+84	+26	-8.0	+2.8	+12
Acc	71%	62%	85%	85%	85%	83%	84%	81%	77%	50%	81%	80%
Perc	5	17	8	1	34	26	21	76	4	3	26	84
Prog	0	0	1	4	4	0	0	0	0	0	0	4

Calving Ease Direct	More Calving Difficulty	Less Calving Difficulty
Calving Ease Dtrs	More Calving Difficulty	Less Calving Difficulty
Gestation Length	Longer Gestation Length	Shorter Gestation Lengt
Birth Weight	Heavier Birth Weight	Lighter Birth Weight
200 Day Growth	Lighter Live Weight	Heavier Live Weight
400 Day Weight	Lighter Live Weight	Heavier Live Weight
600 Day Weight	Lighter Live Weight	Heavier Live Weight
Mat. Cow Weight	Lighter Mature Weight	Heavier Mature Weight
Milk	Lighter Live Weight	Heavier Live Weight
Days to Calving	Longer Time to Calving	Shorter Time to Calving
Scrotal Size	Smaller Scrotal Size	Larger Scrotal Size
Docility	Less Docile	More Docile
NFI-F	Lower Feed Efficiency	Greater Feed Efficiency
Carcase Weight	Lighter Carcase Weight	Heavier Carcase Weight
Eye Muscle Area	Smaller EMA	Larger EMA
Rib Fat	Less Fat	More Fat
Rump Fat	Less Fat	More Fat
Retail Beef Yield	Lower Yield	Higher Yield
IMF	Less IMF	More IMF
Claw Set	Higher Score	Lower Score
Foot Angle	Higher Score	Lower Score
Leg Angle	Higher Score	Lower Score
Angus Breeding Index	Lower Profitability	Greater Profitability
Angus Breeding Low Feed Cost Index	Lower Profitability	Greater Profitability

			Carc	ase			Feed Efficiency		Structural		Se	lection Index
	Carcase Weight	Eye Muscle Area	Rib Fat	Rump Fat	Retail Beef Yield	IMF	NFI-F	Claw Set	Foot Angle	Leg Angle	Angus Breeding Index	Angus Breeding Low Feed Cost Index
EBV	+88	+5.3	+2.3	+4.0	+0.0	+1.9	+0.82	+0.92	+1.08	+1.06	\$275	\$444
Acc	75%	73%	73%	74%	66%	77%	67%	71%	71%	67%	-	-
Perc	7	64	9	4	76	59	95	65	74	59	2	2
Prog	0	0/0	0/0	0/0	0	0/0	0	0	0	0	-	-
					Ti Statistic	raits Observed s: Number of H	I: GL,BWT,200WT erds: 7, Prog Anal	,400WT,Genom ysed: 4 , Genor	nics nic Prog: 4			

ANGUS www.angusaustralia.com.au 00000

Example 2:

- Terminal Angus cow herd
- Buys in replacement females
- Producing steers to then background and sell to long fed lot feeding program.
 - Aim for 420-470kg carcass
 - 3+ marble score

Key Traits for Performance	Trait managed by
Average Daily Gain	Growth EBVs
Carcase Value	Carcase Quality traits
Docility	Docility EBV
Health	Immunedex Trait

...consumer traits, tenderness, marbling...

Target market specifications for cattle carcases

ANGUS

Sire example...

					Februa	ry 2024 Tran	sTasman Angi	us Cattle Eva	aluation				
		Calv	ing Ease					Growth			Fert	ility	Temp.
	Calving Ease Dir	Calving Ease Dtrs	Gestatio Lengt	on Bir า	th Weight	200 Day Growth	400 Day Weight	600 Day Weight	Mat Cow Weight	Milk	Days to Calving	Scrotal Size	Docility
EBV	-12.2	-8.3	-2.7		+5.8	+59	+100	+133	+106	+27	-3.8	+4.2	+29
Acc	80%	72%	98%		97%	97%	97%	97%	96%	92%	66%	93%	94%
Perc	99	99	76		86	15	26	21	41	3	70	5	18
Prog	153	55	292		204	401	386	191	87	126	23	38	131
			Carca	ise			Feed Efficiency		Structural		Se	lection Index	
	Carcase Weight	Eye Muscle Area	Rib Fat	Rump Fat	Retail Beef Yield	IMF	NFI-F	Claw Set	Claw Set Foot Angle		Angus Breeding Index	Angus Breed Feed Cos	ding Low t Index

			Card	ase			Feed Efficiency		Structural		Se	lection Index
	Carcase Weight	Eye Muscle Area	Rib Fat	Rump Fat	Retail Beef Yield	IMF	NFI-F	Claw Set	Foot Angle	Leg Angle	Angus Breeding Index	Angus Breeding Low Feed Cost Index
EBV	+69	+6.3	-3.8	-4.1	+0.5	+5.6	+0.09	+0.94	+1.00	+1.30	\$190	\$294
Acc	93%	93%	90%	93%	85%	92%	80%	94%	94%	92%	-	-
Perc	46	52	99	96	47	2	35	69	56	98	66	86
Prog	31	276/31	277/7	277/31	0	277/7	7	81	81	81	-	-

Traits Observed: GL,CE,BWT,200WT(x2),400WT,SC,Scan(EMA,Rib,Rump,IMF),DOC,Structure(Claw Set x 1, Foot Angle x 1),Genomics Statistics: Number of Herds: 18, Prog Analysed: 462, Genomic Prog: 297

Heavy Grain Low Feed Cost Index	Lower Profitability						Greater Profitability
Heavy Grass Low Feed Cost Index	Lower Profitability						Greater Profitability

ANGUS www.angusaustralia.com.au 00000

Bringing it all together – selecting your bulls

- Biggest impact on herd over time.
- Sires need to match your breeding objectives and target markets.

The long-term impact of selection decision on a self-replacing herd...

Taking it further – HEIFER SELECT

Genomic selection tool for replacement heifer selection

3 Selection

Indexes

e Veri	fica	tion	Breed Che	(0-100 score) ↓																	
11 ID	↓† Year	↓† Sire ID	↓î Angus BreedCHECK	↓↑ CE	↓† ww	↓† YW	lt Milk	↓↑ MCW	↓† HC	↓† ADG	↓† DFI	↓î сwт	↓↑ EMA	↓† RIB	↓î MBL	↓↑ oss	J↑ IMM	↓† ccv	↓↑ FCV	↓↑ TBV	↓↑ HeiferSELECT Stars
RXPL229	2015	Unknown	@	54	48	63	77	51	40	52	40	70	89	71	42	80	67	54	73	72	****
RXPQ9	2019	WWEL3		22	59	48	61	39	85	32	48	63	89	30	86	30	3	66	76	78	****
RXPQ11	2019	WWEL3		62	56	76	72	40	53	13	51	63	73	29	81	62	43	67	84	85	****
RXPQ18	2019	WWEL3	, eef	47	65	50	47	44	79	39	50	42	89	61	51	56	36	72	38	47	★★☆☆☆
RXPQ40	2019	NURM100		38	81	60	48	89	60	57	71	64	76	41	37	75	33	71	31	39	***
RXPR4	2020	NURM100		71	45	71	67	56	49	74	60	69	61	62	50	78	35	52	67	67	★★★☆ ☆
RXPR13	2020	NURM100		69	52	39	32	49	19	61	93	55	32	44	44	94	30	43	17	18	**
RXPT35	2022	USA19611994		31	90	93	56	60	71	60	85	94	92	44	87	57	14	89	92	95	****
RXPT102	2022	BWFQ33		51	36	62	37	37	41	49	71	68	56	74	60	50	51	45	69	67	
RXPT103	2022	BWFQ33		50	61	76	52	43	31	79	74	81	66	52	75	81	60	67	81	82	****

46,000 cattle tested at end of 2023

The future and Market Specs:

- Methane
- Eating Quality
- Sustainability

Take Away Messages

- Know your market make sure your breeding objectives reflect this market.
- Use EBV's to enhance how you perform in your market.
- Bull selection is key.
 - Genomic tools are at your fingertips if you want to take it further.

www.angusaustralia.com.au

Thank you

www.angusaustralia.com.au

Angus Australia

@angusaustralia

🛛 angusaustralia

🗅 Angus Australia

• Angus Australia