

2013 SOIL SURVEY across Fleurieu Peninsula and Adelaide Hills

Simon Ellis Mobile: 0402 027 235 Email: <u>simon@ellisfarm.com.au</u>

Ellis Farm Consultancy

Paddocks Tested:

- 219 in total
- 2 paddocks per property
- On 30 of properties a hay/silage paddock was tested.
- Southern-Fleurieu 31%, Central-southern 21%, Centralnorthern 29%, Northern 18%.
- 47% commercial properties
- Funded by the AMLR NRM Board

Results:

- The perfect paddock?
- Not a one!

Ellis Farm Consultancy

Phosphorus Levels

	Paddocks (all)	% All	% Northern
Average P overall paddocks		40 ppm	33 ppm
>10 ppm above ideal P *	69	32%	28%
Ideal to +10 ppm above ideal P *	44	20%	25%
<10 ppm below ideal P *	47	21%	20%
>10 ppm below ideal P *	59	27%	27%
	219	100%	100%

* Based on formula ideal P = 19.6 + 1.1 x PBI^0.55

Ellis Farm Consultancy

Phosphorus Comments:

- Overall, paddocks are roughly half over ideal and half under.
- Northern area has lower % of high paddocks, ... but similar % of low paddocks. Why?
 - Soil type
 - Topography/accessibility for spreading fertiliser.
 - Lower stocking rate making return on fertiliser lower.

Ellis Farm Consultancy

Phosphorus (cont'd)

• What about native grass needs?

• The high paddocks are:

- a waste of money
- an environmental hazard
- a waste of a scarce resource.

Potassium Levels

	Pdks	%
Average potassium over all paddocks		281
Over 175 ppm (high)	149	68%
145-175 ppm (adequate)	44	20%
120-144 ppm (marginal)	19	9%
Below 120 ppm (deficient)	7	3%
	219	100%

- Relatively few low potassium paddocks.
- Probably too much potassium fertiliser being used.

Ellis Farm Consultancy

Sulphur Levels

	Pdks	%
Average Sulphur overall paddocks		10 ppm
% over 10 ppm S (normal)	81	37%
% 6-10 ppm S (marginal)	98	45%
% less than 6 ppm S (deficient)	40	18%

• High correlation between P and S (0.7)

• Keep using P and S containing fertilisers.

Ellis Farm Consultancy

pH (water) Levels

	Paddocks All	% All	% Northern
Average pH (water) overall pdks		5.8	6.1
pH 6.0 or over (ideal)	68	31%	50%
pH 5.8-5.9 (adequate)	46	21%	25%
pH 5.4-5.7 (marginal)	72	33%	20%
pH below 5.3 (low)	33	15%	5%
	219	100%	

Ellis Farm Consultancy

Acidity Comments:

- Almost half as many seriously acid paddocks in northern area.
 - Less productive pastures?
 - Naturally higher pH's.
 - Just as well in steep areas.
- Lots of liming is still needed.
- Variation between paddocks on the same property.
- 64% of acid paddocks need dolomite rather than lime...
- What value is dolomite over lime?

Ellis Farm Consultancy

Salinity Levels

	Pdks	%
Average conductivity over all paddocks		0.14
Less than 0.15 mS/cm (low)	137	63%
0.15-0.25 mS/cm (emerging issue)	65	30%
0.26-0.5 mS/cm (significant)	17	8%
Over 0.5 mS/cm (high)	0	0%
	219	100%

Ellis Farm Consultancy

Trace Elements Levels

	Marginal/ deficient
Copper	37% !!
Zinc	20% !
Manganese	7%
Aluminium (high)	9%
Boron	94% !!!

Ellis Farm Consultancy

Trace Elements:

- Not entirely reliable for soil status an early warning.
- Really need to follow up with plant tissue tests.
- There are many low/marginal copper and zinc paddocks.
- The boron critical levels are extrapolated from other crops obviously not appropriate for pastures. Need for trials.

Ellis Farm Consultancy Sustainable beef, sheep and pasture production

Grass Tetany Risk

Grass tetany is caused by low magnesium in the lactating cow. Sheep are seldom affected.

Mostly on grass dominant pastures.

	%
Safe	22%
Marginal risk	26%
High risk	13%
Dangerous	40%

Ellis Farm Consultancy

Commercial vs Small-scale

	Pdks	Ρ	К	S	pH water	pH CaCl ₂	Conduc- tivity	Cu	Zn
Commercial grazing	47%	44	300	12	5.7	5.0	0.16	2.1	2.9
Small scale grazing	53%	36	265	9	5.9	5.2	0.13	1.7	3.5

Ellis Farm Consultancy

Enterprise

	Pdks	Ρ	K	S	pH water	Conduc tivity	Cu	Zn
Hay/silage & grazing	30%	46	269	12	5.9	0.15	2.0	3.4
Beef cattle	29%	39	267	10	5.8	0.13	1.9	3.4
Mixed grazing	19%	34	321	9	5.8	0.17	1.2	2.7
Sheep	19%	33	262	9	5.7	0.12	2.3	2.1

Ellis Farm Consultancy

Area

	Pdks	Р	K	S	pH water	Conduc- tivity	Cu	Zn
Southern - Fleurieu	69	44	312	12	5.9	0.16	1.7	3.0
Central - southern	46	38	227	9	5.8	0.13	1.8	3.4
Central-northern	64	41	269	10	5.6	0.14	1.9	3.8
Northern	40	33	312	9	6.1	0.13	2.2	2.2

Ellis Farm Consultancy

Some Conclusions:

- There is a lot of wasted fertiliser.
- There are many under-fertilised paddocks.
- There are many acid paddocks.
- There are some area differences.
- We need to use soil testing more!!!
- Repeat survey in 5 years.

