Grasslands Fertiliser Demonstration 2015/2016

Background

The productivity of pastures is influenced by a number of factors including soil fertility. However different pasture species have different nutrient requirements with native pastures generally considered to require less nutrition than introduced species. The aim of this demonstration is to investigate the response of native pastures to superphosphate at various rates and whether it is an option to speed up the recovery of the pastures eg increase dry matter growth and improve ground cover after a fire.

Soil test were completed at 20 properties in the bushfire affected area and the two tests below are from the properties where the two fertiliser demonstrations were set up.

Nutrient
pH (1:5 CaCl2)
Phosphorus (Colwell) mg/kg
Sulphur mg/kg
Copper (DTPA) mg/kg
Zinc (DTPA) mg/kg

Keynes's	Treloar's	
6	5.6	
4	6	
2.2	2.8	
0.52	0.24	
0.92	0.5	

Method

Two sites were selected to set up a replicated single super fertiliser demonstration. One located on Keynes property and the other on Treloar's

The demonstration had three different applications of Single Super replicated 3 times (50kg, 100kg and 150kg per ha). The Control had no single super applied.

Plot size - 10 meters x 2 meters with a 2 meter buffer between plots

The Single super was spread on the 7th May 2015 and 24th March 2016

Map – Kg of Single Super applied per hectare

100	50	Control	150
Control	150	100	50
50	100	150	Control

Direction of plots Hill Top – Keynes's site East – Treloar's site

Results

On the 27th of September half of each treatment was mowed and the dry matter collected and weighed. A sample was taken from each treatment and dried in a microwave to establish the average dry matter percentage of each site.

Due to the nature of the country some factors that could distort the figures include

- The amount of rock in the plot (no grass grows where the rock is).
- The pasture did not grow after the mowing in 2015 so there was low ground cover over the 2015/16 summer.

Visual Assessment

- In the fertiliser treatments the plant size of haresfoot clover, clover, geranium, cape weed and wild oats had increased compared to the control.
- No decline in native grass growth and density

Treloar's Site

Table 1. Dry Matter for each Treatment kg/ha (Red 2016 / Black 2015)

100	50	Control	150
910	1190	1260	1330
860	1170	980	970
Control	150	100	50
1610	1730	1890	1640
1340	1440	1080	1250
50	100	150	Control
1160	1660	1870	1660
1420	1160	1530	1080

Table 2. Average Dry Matter per ha for each of Treloar's treatment			
Control – 1510 kg DM/ha 50kg – 1330 kg DM/ha 100kg – 1480 kg DM/ha 150kg – 1640 kg DM/ha			

Table 3. Cost of extra dry matter grown

Treatment	Kg P /ha	Extra Dry Matter	Cost of fertiliser	Cost of extra DM grown
		grown above	Including	Cents / kg DM
		control kg/ha	spreading /ha	
50kg /ha	4.4		\$18.50	
100kg /ha	8.8		\$37	
150kg /ha	13.2	130	\$55.50	43

Keynes's Site

Table 4. Dry Matter for each Treatment kg/ha (Red 2016 / Black 2015)

100	50	Control	150
1520	1390	1040	1870
1650	1890	1660	2150
Control	150	100	50
1120	1910	1860	1610
1900	2100	1860	1780
50	100	150	Control
1030	1320	<i>1500</i>	1010
1620	1610	1640	1620

Table 5. Average Dry Matter per ha for each of Keynes's treatments				
Control – 1060 kg DM/ha				
50kg – 1340 kg DM/ha				
100kg – 1570 kg DM/ha				
150kg – 1760 kg DM/ha				

Table 6. Cost of extra dry matter grown

Treatment	Kg P /ha	Extra Dry Matter	Cost of fertiliser	Cost of extra DM grown
		grown above	Including	Cents / kg DM
		control kg/ha	spreading /ha	
50kg /ha	4.4	280	\$18.50	6.6
100kg /ha	8.8	510	\$37	7.25
150kg /ha	13.2	700	\$55.50	7.9

Summary

The dry matter results show a good response of spreading single super on the Keynes site but the Treloar site was variable due to soil depth and rocks making it difficult to accurately assess. There was no visual decline in the native grass density after 2 applications of single fertilisers but visually the legumes (predominantly haresfoot clover), geranium, capeweed and wild oats responded. This is good quality feed and would help improve livestock production from the paddock. There also needs to be a consideration made for the added benefit for pasture growth in the future as not all of the phosphorus and sulphur would be removed by livestock in the first year but recycled in the paddock for future use.