Pasture Research Update

Dr Alan Humphries, David Peck, Ross Ballard, Trevor Rowe Feb 2017

AUSTRALIAN RESEARCH & DEVELOPMENT INSTITUTE **PIRSA**

SOUTH

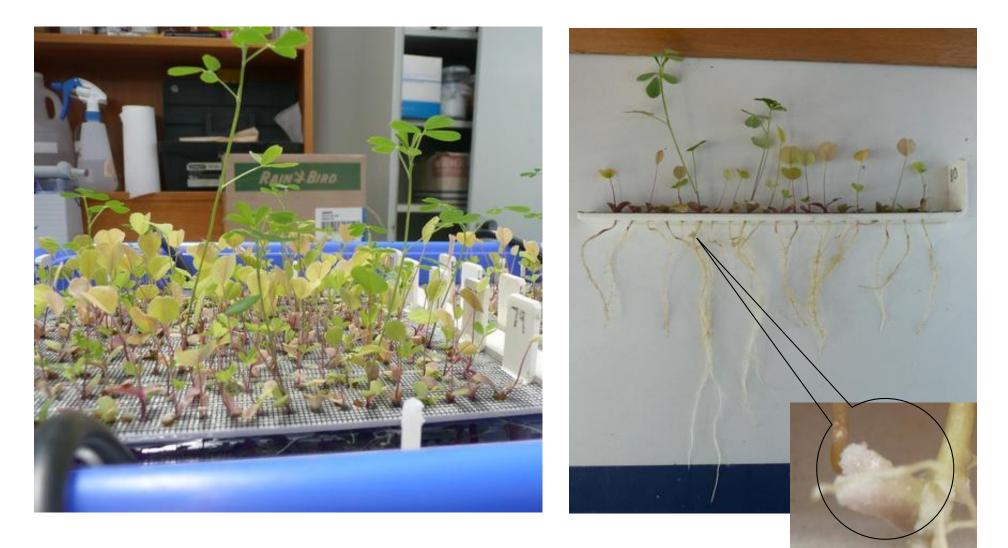
of South Australia

Primary Industries and Regions SA SARDI South Australian RESEARCH AND DEVELOPMENT

INSTITUTE

Overview

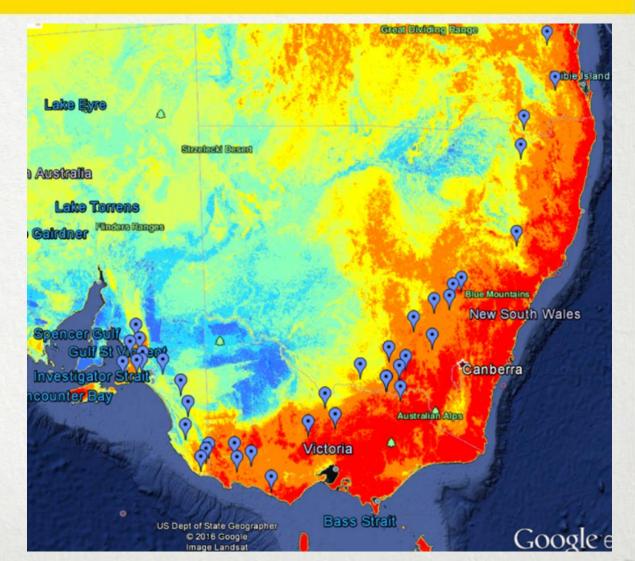
- 1. Breeding lucerne with tolerance to acidic soils
- 2. New pasture developments
 - New brachy sub clovers
 - MLA Pre-breeding activities for annual pastures
 - SU tolerant medics
 - Glyphosate tolerant lucerne
 - Messina
 - New proposal for collaborative farmer driven research



Intolerance of lucerne to acidic soils

- Poor root growth
 - Tolerance to low pH
 - Aluminium toxicity
 - Mn, availability other nutrients
- Poor nodulation
 - Survival of Rhizobia in soil
 - Nodulation potential of plant

Multiple trait selection


Nodulated plants with long roots

Heritageseeds 2

- Target:
 - Very persistent, especially in the colder, wetter regions with acidic soils.
 Aim was to replace winter active 3-5's in these environments.
 - Excellent aphid and disease tolerance
- Method:
 - 30 years of recurrent selection for these environments.
 - Evaluation trials sown unfenced and managed by farmers

FIELD EVALUATION -with natural soil and 3 lime rates

Soil Chemistry

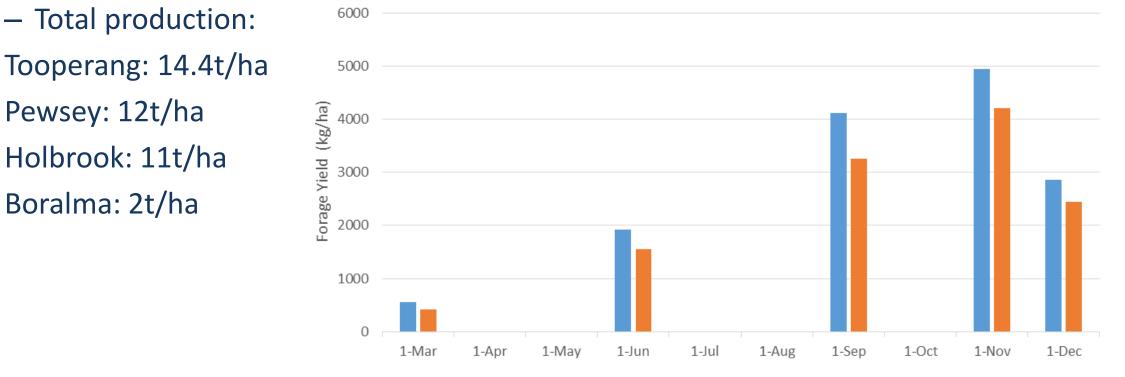
Site	Depth	N0 ₃	P Colwell	K Colwell	S	pH (CaCl₂)	DTPA Mn	Exc. Al	Exc. Ca	CEC total	AI CEC
		mg/kg	mg/kg	mg/kg	mg/kg	рН	mg/kg	meq/ 100g	meq/ 100g	meq/ 100g	%
Tooperang	0-10	5	89.4	91	6	4.2	10.7	0.4	2.5	3.5	11
	10-20	1	13	29	4	4.5	3.8	0.3	0.3	0.7	41
	20-30	3	3	146	12	4.5	2.2	0.9	3.5	6.7	14
Pewsey Vale	0-10	61	88	116	9	4.1	10.7	0.8	1.9	3.3	24
	10-20	12	51	94	4	4.3	3.8	0.6	0.9	2	33
	20-30	11	33	86	4	4.4	2.2	0.6	0.8	1.7	32
Holbrook	0-10	42	48	323	16	4.3	140	0.8	4.4	7	12
	10-20	14	11	216	12	4.6	101	0.3	4.5	6.6	5
	20-30	20	6	177	11	5.1	45	0.1	5.4	8.1	1
Boralma	0-10	46	15	319	8	4.3	100	0.8	2.1	4.3	16
	10-20	6	6	189	4	4.7	60	0.6	2.8	4.5	18
	20-30	4	4	151	2	5	24	0.3	3.7	6.4	5

Soil Chemistry

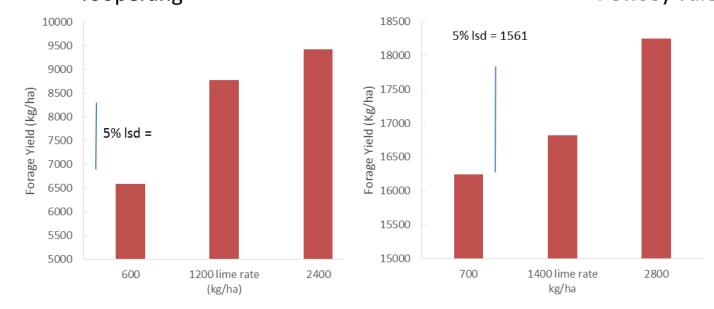
Site	Depth	N0 ₃	P Colwell	K Colwell	S	pH (CaCl₂)	DTPA Mn	Exc. Al	Exc. Ca	CEC total	Al CEC
		mg/kg	mg/kg	mg/kg	mg/kg	рН	mg/kg	meq/ 100g	meq/ 100g	meq/ 100g	%
Tooperang	0-10	5	89.4	91	6	4.2	10.7	0.4	2.5	3.5	11
	10-20	1	13	29	4	4.5	3.8	0.3	0.3	0.7	41
	20-30	3	3	146	12	4.5	2.2	0.9	3.5	6.7	14
Pewsey Vale	0-10	61	88	116	9	4.1	10.7	0.8	1.9	3.3	24
	10-20	12	51	94	4	4.3	3.8	0.6	0.9	2	33
	20-30	11	33	86	4	4.4	2.2	0.6	0.8	1.7	32
Holbrook	0-10	42	48	323	16	4.3	140	0.8	4.4	7	12
	10-20	14	11	216	12	4.6	101	0.3	4.5	6.6	5
	20-30	20	6	177	11	5.1	45	0.1	5.4	8.1	1
Boralma	0-10	46	15	319	8	4.3	100	0.8	2.1	4.3	16
	10-20	6	6	189	4	4.7	60	0.6	2.8	4.5	18
	20-30	4	4	151	2	5	24	0.3	3.7	6.4	5

Impact of pH on nodulation

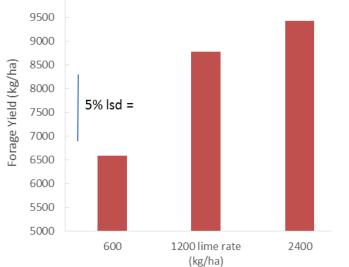
(Holbrook, Boralma, Pewsey Vale, Tooperang) 100 90 80 5% lsd = 16.4 70 % Nodulation 60 50 40 30 20 10 0 4.1 4.3 4.4 4.8 soil pH (CaCl2) S7s2 nill S7s2 RRI128 Acid Tolerant

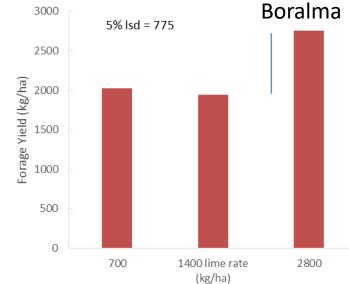

*(Combined results from no-lime and limed experiments to achieve pH gradient.

Lucerne still extends the growing season and gives summer feed on acid soils .

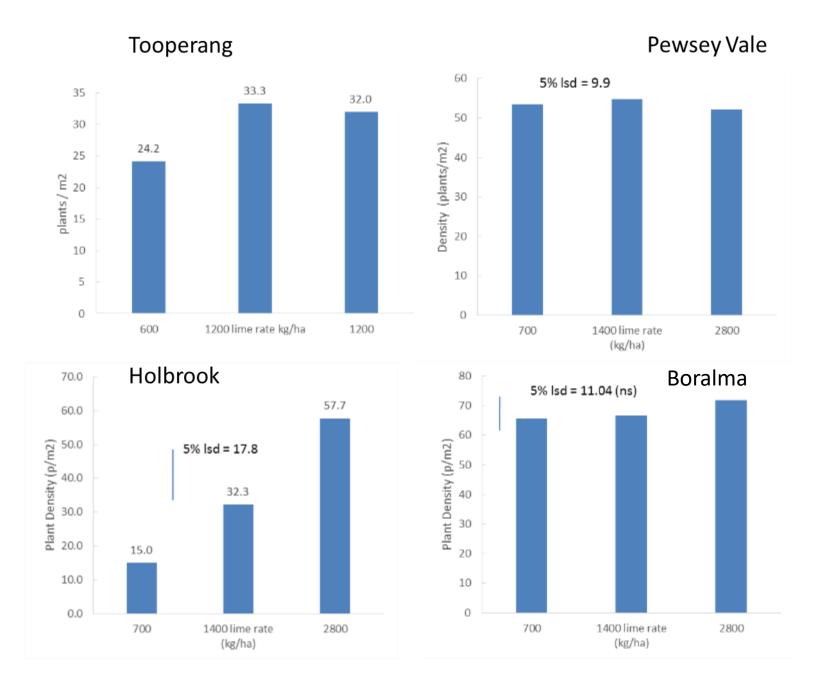

Decile 1-2 spring inducing a soil water deficit from mid-September in 2015.


58% of production from Nov, Dec and Mar cuts




S7s2 TA37

Impact of lime on cumulative production Tooperang



Final Plant Density at 3 lime rates

Summary

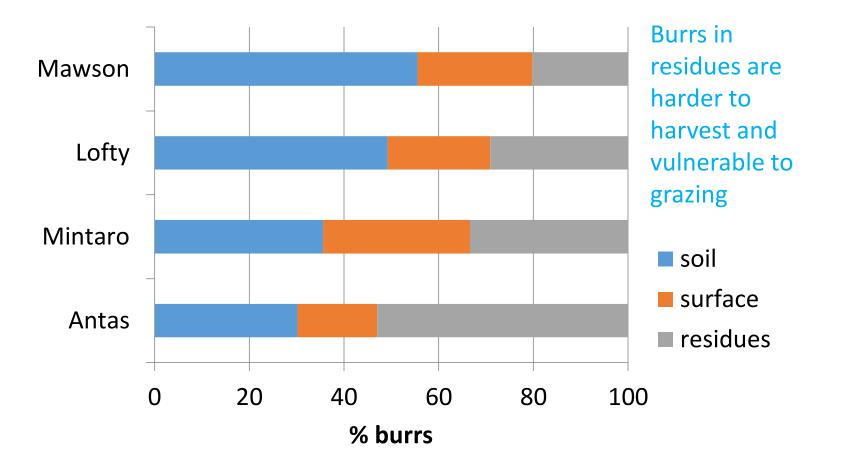
- Performance of lucerne overall much better than expected on highly acidic soils
 - * Long-term breeding for adaptation on acidic soils with S7S2 successful
 - * High forage yield and nutritive value
- Yield further improved with lime
 - Return on investment in first 18 months
 - Likely to improve resilience (combined stresses of drought x grazing x competition x Waterlogging)
- Recommendations for sowing SARDI 7 Series 2 and TA37 above pH_{Ca} 4.5 with new strain (to be available from next year) in combination with lime

New Pasture Developments

1. Two new subclover cultivars

Mawson

- Early season
- Moderate levels of hardseed (43% cf Antas 30%, Mintaro 58%)
- High winter production

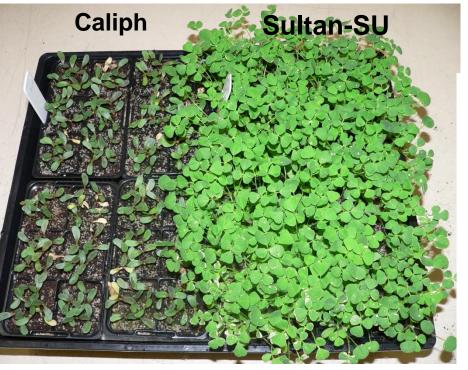

Lofty – Antas replacement 2018

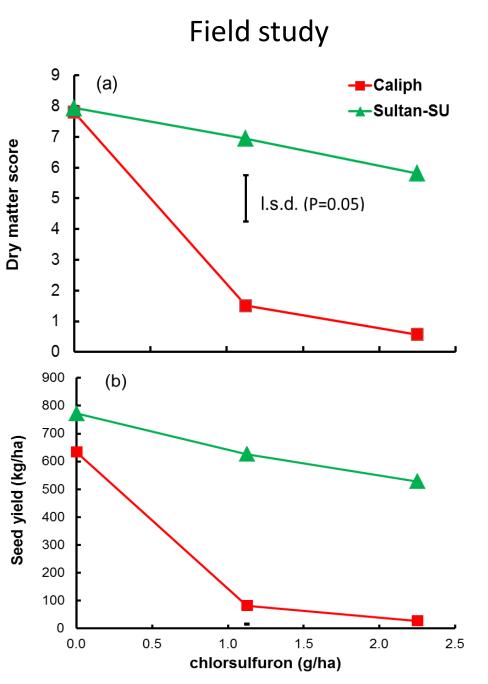
- Mid season
- Moderate levels of hardseed (38%)

S A R

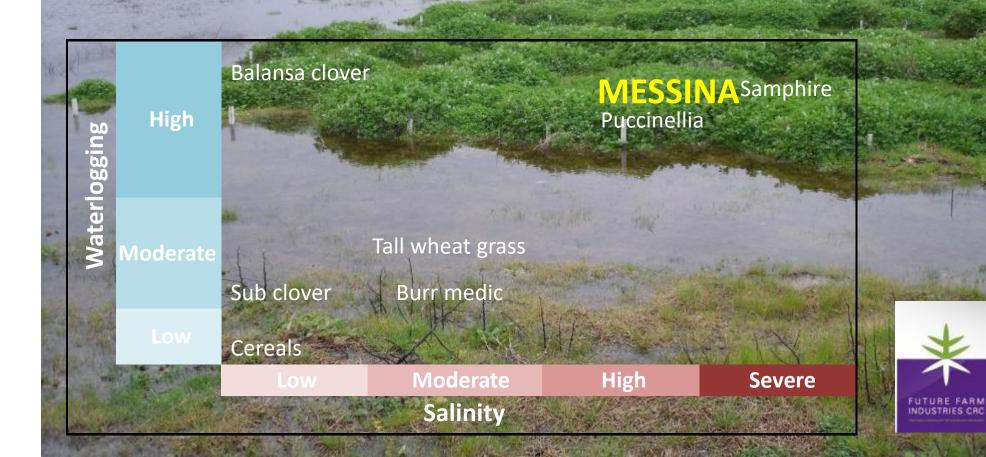
High winter production

Mawson and Lofty (brachy.) have improved burr placement Seed industry & persistence issue


S A R D I


SU tolerant medics

Sultan- Early season


- Aphid resistant and boron tolerant
- Jester Mid season, available 2019

Glasshouse Screen

4. Messina is the first legume pasture to be both tolerant to waterlogging and salinity. Stopps- south of Tintinarra

2. Resistance to RLEM Phil Nichols (DAFWA)

Annual medic germplasm obtained from APG

- 150 lines from 11 species
- Barrel medics
 - Cultivars have 44% to 72% damage
 - Best line has 13% damage
- Burr medics
 - Cultivars have 59-88% damage
 - Best line has 2% damage

6. New Proposal: Productive feedbase options – complex systems, simple solutions.

- Submitted in December 2016
- Field based research *driven* by issues identified by each producer groups targeting;
 - New pasture options that reduce feed-gaps.
 - How to manage the pastures and get the most out of them for livestock production.
 - The impact of improved forages on meat quality
 - Farm systems analysis to understand implications of profitability and risk.
- Vic., SA and Tasmania
- Locally: BIGG, Mackillop, AgKI, Limestone coast grasslands, FPAg.

Thank you

